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Abstract 

Mul t ip l e  Laue  rock ing  curves o f  perfec t  crystals  show 
a n a r r o w  cent ra l  p e a k  wi th  a wid th  o f  some  10-3s  
arc a n d  an  a d d i t i o n a l  osc i l la tory  structure.  The  finite 
s t ruc ture  o f  these  curves is ana lyzed  for  two- and  
three-crys ta l  Laue  a r rangement s .  These  profi les  can  
be used  for  precise  de t e rmina t i ons  o f  s t ruc ture  factors  
a n d  for  an  ex tens ion  o f  smal l -angle  sca t te r ing  experi-  
ments  to the  ex t reme smal l -angle  reg ime where  large 
objects  a n d  long- range  par t ic le  cor re la t ions  b e c o m e  
visible.  An  ex t remely  h igh  angu la r  r e so lu t ion  can  be 
ach ieved  w i thou t  s ignif icant  r educ t i on  o f  the  

in tens i ty ,  owing  to a d e c o u p l i n g  o f  the  a n g u l a r  
r e so lu t ion  f rom a n g u l a r  wid th  o f  the  beam.  The  
ana ly t i ca l ly  ca l cu la t ed  rock ing  curves are c o m p a r e d  
to n u m e r i c a l  results  a n d  to expe r imen ta l  results  and  
show g o o d  ag reemen t  wi th  both .  

Introduction 

The d y n a m i c a l  d i f f rac t ion  o f  X-rays  a n d  neu t rons  
on  mul t ip le -per fec t -c rys ta l  a r r angemen t s  has  been  
s tud ied  extens ive ly  du r ing  the  pas t  years.  M o n o l i t h i c  
and  po ly l i th ic ,  p l a n e  a n d  bent ,  s tat ic and  v ibra t ing  
systems have  been  discussed.  D y n a m i c a l  focus ing  
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effects appearing in the spatial intensity profile have 
been studied for X-rays and neutrons (Indenbom, 
Suvorov & Slobodetskii, 1976; Bauspiess, Bonse 
& Graeff, 1976; Aladzhadzyan, Bezirganyan, 
Semerdzhyan & Vardanyan, 1977; Bonse, 1979; 
Petrascheck, 1979). Multiple Laue rocking curves also 
show a focusing effect on the angular scale in the 
form of a very narrow central peak (Bonse, Graeff, 
Teworte & Rauch, 1977; Bonse, Graeff & Rauch, 
1979; Bonse & Teworte, 1980, 1982a, b; Cusatis, Hart 
& Siddons, 1983; Rauch, Kischko, Petrascheck & 
Bonse, 1983). The width of the central peak is of the 
order of dhkt/t, where d h k  I is the lattice spacing and 
t is the thickness of the crystals. This peak can be 
resolved either by rotating a wedge-shaped material 
around the beam axis of a monolithically designed 
multiplate system (Bonse, Graeff & Rauch, 1979) or 
by a very precise mechanical rotation stage for a 
separated system (Bonse & Teworte, 1982a, b). 

The resolution in momentum space lies in the range 
10-7--10-9,Z~k -I and therefore small-angle scattering 
experiments can be extended to this regime where 
macroscopic objects, inhomogeneities or long-range 
interparticle interferences become observable. In a 
test experiment the Frauenhofer diffraction of slow 
neutrons (A = 1.8/~) on macroscopic slits (2.5 and 
5 mm) has been observed (Rauch, Kischko, Petras- 
check & Bonse, 1983). There exists a decoupling 
between the intensity and the angular resolution and 
therefore one can use incident beams with a large 
geometrical cross section and quite broad distribu- 
tions in wavelength and angle. 

According to the physics of small-angle scattering 
(e.g. Glatter & Kratky, 1982) large objects and inter- 
particle correlations over long distances become 
observable at a very low momentum transfer regime 
which can be measured very economically by the 
technique of multiple Laue reflections. The advan- 
tages of crystal collimation compared to slit collima- 
tion have been discussed for the Bonse-Hart camera 
(Bonse & Hart, 1965) by Kratky & Leopold (1970) 
and they are even more convincing for the multiple 
Laue camera if appropriately large objects have to 
be investigated. Because transmission geometry has 
to be used neutrons offer the additional advance of 
low absorption. 

Here we present analytical results for multiple Laue 
rocking curves, which serve for a deeper understand- 
ing of the related phenomena. Various terms appear 
in these equations which have a quite different 
angular dependence and a different sensitivity to vari- 
ations of the crystal thickness or of the wavelength 
spread. 

Multiple Laue diffraction on parallel crystal plates 

Successive Laue diffraction on parallel crystals is 
described by the well known dynamical diffraction 

profiles (Zachariasen, 1967; Rauch & Petrascheck, 
1978; Sears, 1978). It is assumed that the diffracted 
and the transmitted beams are well separated, so one 
can consider only the diffracted waves, as is shown 
in Fig. l(a). The reflectivity of a parallel crystal slab 
is given by 

sin 2 [A(1 +y2)1/2] 
P(t,y)= 1 +y2 (1) 

for non-absorbing crystals. A is the reduced thickness, 
given by the thickness t and the Pendell6sung length 
Ao: 

~t Alb¢F(G)lt 
A ~ _ _ ~  

Ao v~ (cos 3' cos 3'G) ~/2 

and y is the reduced angular deviation 

y = 27rvc cos 3' sin 20B(0B -- 0) 

+ A 2bcF(O ) (cos T - cos To) 

x[2AEIbcF(G)I(cos T cos 3'0)'/2] - '  

bc is the coherent scattering length, F(G) is the 
geometrical structure factor, vc is the volume of the 
unit cell, A is the wavelength and 3', To are the angles 
of incidence and of reflection, respectively. (0-On) 
is the deviation of the incident wave from the exact 
Bragg angle. 

The integrated intensity of n successive Laue 
diffractions on crystal slabs of thickness t is given by 

oo 

R (")= ~ dy[P(t,y)]". (2) 

For reflection on a single-crystal plate one obtains 
Wallet's formula. For thick crystals the Bessel func- 
tion Jo may be replaced by its asymptotic expansion 
(DeMarco & Weiss, 1965) 

2 A  

R(I)= I dtJo(t) 

0 

- 2  (~.A)1/2 cos 2A+ 

5sin (2A + 7r/4)]} (3) 
+8 2A ' 

which holds for t/Ao> 1. 
In a two-crystal arrangement we obtain approxi- 

mately 

x cos 2A+ + 8 2A 

l ( ~ A ) ' / 2 [  ( 4 )  13s in(4A+Tr/4)] .  
+~ cos 4A + +-~- 4A ' 

(4) 
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and for n = 3 

R(3)--~ 157r128 ---3215 ( A ) ' / 2  

x [cos (2A +-~ 7r) + 8  sin (2A + ~r/4) ] ~ - ~  J 

6 ( ~ A ) ' / 2 [  ( ; )  21 sin (4A + ~ / 4 ) ]  
+ ~  cos 4A + +-~- 4A 

1 7r 1/2 qT 

(5) 

R (i), R (2), R (3) and R (5) are plotted in Fig. l(b) vs 
t/Ao. The intensity oscillates around an average value 
given by the first term of (3)-(5). The averaged 
intensity decreases whereas the height of the oscilla- 
tions remains nearly unchanged. Also, the frequency 
is essentially determined by 2A = 27rt/Ao, as for one 
single crystal. The oscillations of higher frequency 
modify only the form of the oscillations. Thus the 
dependence on the thickness becomes more impor- 
tant for increasing the number of reflections and has 
to be considered in the calculation of the rocking 
curves for two- or three-crystal spectrometers. 

Two-crystal spectrometer 

The fine structure of the Laue-case rocking curves 
have been investigated during the last few years. First, 
Bonse, Graeff, Teworte & Rauch (1977) pointed out 
that the intrinsic rocking curves of a perfect-crystal 
spectrometer in a non-dispersive arrangement should 
have an oscillatory structure 

o o  

R(2)(v, t )= I dy P(t, y)P(t, y + v )  
- - 0 0  

= Ra + Rp + R, + Ro (6) 

with its maximum value for v = 0. The oscillatory 
structure of P(t, y) and P(t, y + v) becomes different 
for increasing v which reduces the contributions o f  
large y values. Fig..2 shows the numerical calculations 

~ RtZ) 

~ RtJ) 

RtS) 

RO)  2 

2.5 5 
t l  ,~ o 

(a) (b) 
Fig. 1. (a) Scheme of the experimental situation and (b) integral 

reflectivities for multiple Laue rocking curves as a function of 
the crystal thickness. 

for two thicknesses which are near the values of 
minimum and maximum intensity. We may rewrite 
(6) by replacing the powers of the trigonometric func- 
tions with the multiple of their arguments. 

Thus, the different contributions to the integral of 
(6) read: 

c o  

' I  l 
Ra =~ dy (1 +y2)[l +(y +v) 2] 

- -OO 

71" 

=S(1 + v2/4) ' (7) 

which .is the convolution of the two average (Fig. 
2(a)) reflection curves, the Lorentzian of (7). The next 
term 

o o  

1 [" cos {2A[1 +(y+v)211/2-ZA(1 +y2)!/2} 
Rp=~ J dy (l +yZ)[l +(y + v) 2] 

- - O O  

_ ~r J,(2Av) (8) 
8 2Av 

describes the central peak (b) of Fig. 2. 
The half width of the central resonance is v ,  = 

2.215/A. A comparison with the experiments of 
Bonse, Graeff & Rauch (1979) gives a good agreement 
between the experimental value of vH = 7 x 10 -3 s arc 
and the theoretical value of 6.6 x 10 -3 s arc. 

0.6 

R(2J 

I 0.4 

i : I I i 

. t~Ao =J0.375 

I I I 1 
-, -2 0. ) 4 

= V 

Q4 
~J 

0.3 

I a2 a'~ ~.2 o 

t/ao=9875 

I I 
0.2 0.4 

- - - " q ~ F  

(a) (b) 

t/=o=~3 
0.2 

u v v v v v v v  ~ - " p  V~--~J-V v v v v vv 

-0.1 , I : , I , , 

"-2 -l 0 I 2 
--- V 

(c) 
Fig. 2. (a) Analytically and numerically calculated double Laue 

rocking curves for two different crystal thicknesses. The central 
part (b) and the various contributions (c) are shown separately. 
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In a more detailed study of the reflection curve one 
may calculate further terms: 

o o  'I R, = - ~  dy 
--00 

COS [2A(1 +y2)U2] 
(1 + y2)[ 1 + (y + v) 2] 

l ( A )  ~12 cos(2A +Tr/4) 
~ --2 141) 2 

1 ( A ) ' / 2 s i n ( 2 A + T r / 4 )  
2A 1 + v 2 

x 42(1 +v2--------~ (1 ~v2)2j ' (9) 

where R, is a thickness-dependent (t) contribution 
which lowers or raises the broad background. 
Equation (9) is evaluated by the method of the station- 
ary p h a s e - a s  are most of the following integrals. 
This method is appropriate for oscillating integrals 
of the type of (9) and one obtains very accurate results 
for thick crystals. 

The corrections in (9) of the order of 1/A are 
obtained also by the method of the stationary phase, 
similar to the expansion of Gaussian integrals. The 
series have only semiconvergent character. For most 
cases we may neglect these corrections. The oscillat- 
ing structure of Fig. 2 is determined by 

c o  

1 [ cos(2A{[1 +(y+v)2]'/2+(1 +y2)~/2}) 
Ro=~ a dy ( l + y 2 ) [ l + ( y + v )  2] 

--OO 

l('Tr)|/2COB[aA(I+1)2/a)II2+'T~'/4] 
-----8 2-A (1 +v2/4) 5/4 

1 '/2 2-a (13-1)2) 

sin [4A(1 + 1)2/4)1/2 + ~ / 4 ]  
X (1 + V2/4) 7/4 (10) 

The different contributions to the intensity, (7)-(10), 
are displayed in Fig. 2 for t = 10.375 Ao. The correc- 
tions in (9) and (10) are very small. Thus, our analyti- 
cal results are, within the accuracy of the drawings, 
in agreement with the numerical calculated intensity 
profiles. 

Absorbing crystals 

Although absorption is less important for neutrons 
than for X-rays its influence can be included. In 
the symmetric case we have to replace (1) by 
(Zachariasen, 1967; Rauch & Petrascheck, 1978) 

p(t, y)= e-Z'e Jsin [a(z'2 + y2)'/2]12 ' 
(v2 +y2)1/2 (11) 

where te = t/cos 0a is the effective thickness. ~ is 

the macroscopic attenuation cross section and u2= 
V(-G)  V(G)/[V(-G) V(G)J- 1 - 2iK, where V(G) is 
the Fourier transform of the interaction potential. As 
in the non-absorbing case one can separate Rt2)(v) 
into the different contributions and one obtains 

16(1 + v2/4) (1 +V2/4) 1/2] 

+(1  +-~)12[(1 4KA ] 
v 2 / )  J 4  I/2 J 

7r Jl(2Av) l (A)l l2cos(2A+'trl4)  
+ 8  2A--------~ 2 1 + v 2 

×cosh (1 +v214)u2j 8 - ~  

cos [4A(1 41)2/4) I/2 + rr/4]} 
X (1 +/32/4) 5/4 " (12) 

I0 and /2  are the modified Bessel functions. The first 
term contains the anomalous weak absorbed parts 
and remains in thick crystals, whereas the central 
peak is attenuated by the normal absorption. 

It is already known from the spatial intensity pro- 
files in two- or three-crystal arrangements (Petras- 
check, 1979) that focusing phenomena are strongly 
affected by the absorption because such effects are 
related to the interference of strong and weak absor- 
bed waves. Thus it is necessary for the observation 
of the rocking curves to keep 2re < 1. Very accurate 
measurements of such rocking curves have been done 
(Bonse & Teworte, 1980, 1982a, b). 

Triple Laue case 

For the triple Laue rocking curves the rotation of the 
crystals (v, w) or the beam deflection between the 
crystals can be in the same or in the opposite direction. 
For such arrangements the intensity is 

oo 
R(3)(t, v, w ) =  ~ d y P ( t , y ) P ( t , y - v ) P ( t , y - v - w )  

- -oO 

= R~ +Rp +R, +Ro. (13) 

Two different cases are discussed in the following: 
v = - w  and v=w. 

For v = - w  the diffraction pattern of a Laue two- 
crystal spectrometer is folded with the diffraction 
pattern of one crystal plate. As in the case of two 
crystals we separate (13) into the different contribu- 
tions. First we consider the rocking curve which is 
obtained from the averaged rocking curves 

37r 3 +v2/4 
R, , -  12----8 (1 +v2/4) 2" (14) 



D. PETRASCHECK A N D  H. RAUCH 449 

The central peak is given by 
oo 

1 f cos(2A{[l +(y+v)2]'/2-(1 +y2)~/2}) 
Rp=-~ J dy (1 +y2)2[1 + ( y + v )  2] 

--OO 

3 zr J2(2Av) 
-- 8 (2An) 2" (15) 

For thick crystals the height of this peak can be 
estimated from the difference of the maximum of R (3) 
which appears for v = w = 0 as 157r/128 [see (5)] and 
the maximum of the rocking curve between a mono- 
lithic double crystal and a third crystal plate which 
is 97r/128 resulting from (14). The difference of 
6¢r/128 belongs to the central peak (Rauch, Kischko, 
Petrascheck & Bonse, 1983). 

If  the incident waves have a sufficiently broad 
wavelength distribution, the thickness-dependent 
terms Rt and the oscillating terms R0 vanish by 
averaging and the rocking curve is obtained from (14) 
and (15). The width of the central peak is given by 
VH = 2"755/A. 

For higher-resolution work the thickness-depen- 
dent terms may appear and they are treated within 
the stationary-phase approximation.* In Fig. 3 the 
different contributions to the intensity are displayed. 

*An Appendix containing this detailed information has been 
deposited with the British Library Lending Division as Supplemen- 
tary Publication No. SUP 39215 (3 pp.). Copies may be obtained 
through the Executive Secretary, International Union of Crystal- 
lography, 5 Abbey Square, Chester CH1 2HU, England. 

0.3 

0.2 

R 

to., 

-0.1 

-w r.~ w v. - " 
,, ,,U,,VV 

r I ) 

-2  -l  

Q3 

, VW, v, . . . . . . . . . . . .  

i I i 

0 I 2 
= V " W  

0 ~ ,,.i 
-0.1 . . . .  IVV V ~ v ~k~/l ; V U I ~ v ~ )  

- 2  - I  0 I 2 
V : - W  

Fig. 3. The different contributions to the triple Laue rocking curves 
for t / A  o = 10-375. 

The numerical integrated intensites are again in agree- 
ment with our analytical results within the accuracy 
of drawings. 

Now we draw our attention to the other case v = w. 
Ra is obtained by averaging each crystal plate separ- 
ately 

3~r 1 
Ra = 6--4 (1 +v2/4)(1 +v2)" (16) 

The central peak is now given by 
oo 

Rv = 1 j dy {2 cos {2A[[1 + (y +v)2] ' /2- (1  +y2)1/2]} 

--<20 

+cos (2A{[I +(y + v)2]1/2- [1 +(y - o)2)]I/2})} 

x {[1 + (y + v)2](1 + y2)[1 + (y - v f ] } - '  

J2(2Av) J2(aAv) 1 = 3____~ 2 + (17) 
16 (2Av) 2 (4Av) 2 J" 

As in the former case the height of this peak is given 
by the difference of the value of R (3) [(5)] and the 
value of (16) for v =0.  Here it is 97r/128. Thus, the 
height of the peak dominates the background by a 
factor of 3. The half width is given by VH =2"10/A. 
As in the former case the thickness-dependent terms 
Rt and Ro have been treated in the same manner. 

For practical application one has to include the 
spread of the wavelength distribution. Assuming a 
Gaussian distribution this causes for R, and Ro an 
attenuation factor proportional to (AAA/A) 2 which 
strongly reduces these contributions, whereas the 
attenuation factor for Rp is to first order proportional 
to (AA / h)2 only and therefore this term remains nearly 
unchanged. This is in agreement with numerical 
calculations (Bonse, Graeff, Teworte & Rauch, 1977). 

Related measurements have been reported (Rauch, 
Kischko, Petrascheck & Bonse, 1983). The spec- 
trometer is based on the monolithically designed 
neutron interferometer (Rauch, Treimer & Bonse, 
1974) and the deflection of the beams between the 
perfect-crystal plates is achieved by wedges rotated 
around the beam axis (Fig. 4(a)). The beam deflection 
within the horizontal plane is given in this case as 

Nbo,~ 2 /3 
8 = 8 0 s i n a =  h t a n ~ s i n a ,  

where a is the rotation angle around the beam axis, 
/3 is the wedge angle and N and bc are the particle 
density and the coherent scattering length of the 
wedge material. Characteristic results for the case 
v = - w  and an aluminum wedge having/3 = 13 ° and 
for v = w measured with an aluminum wedge with 
/3 = 22 ° are shown in Figs. 4(b) and (c), respectively. 
The measurements have been made at a neutron 
wavelength A = 1.835/~, a symmetrical 220 reflection 
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on per fec t  s i l icon crysta ls  wi th  th icknesses  o f  t / A o  = 
60.60. The  expe r imen t s  have  been  p e r f o r m e d  us ing 
an  en t r ance  slit w ide r  t h a n  the wid th  o f  the  B o r r m a n n  
fan  to jus t i fy  a c o m p a r i s o n  with  the resul ts  o f  the 
p l ane -wave  theory .  

WEDGES ~ ot 

Si- CRYSTAL 

(a) 

Before  one  c o m p a r e s  the  e x p e r i m e n t a l  rock ing  
curves  wi th  ca lcu la ted  resul ts  one  has  to cons ide r  
the in f luence  of  the  wave leng th  spread ,  va r i a t ions  
of  the crys ta l  t h i cknesses  etc., which  cause  a va r i a t ion  
of  the  r e d u c e d  th i ckness  o f  abou t  A A / A - - -  1%. Thus ,  
the  t h i c k n e s s - d e p e n d e n t  te rms R,  a n d  R0 b e c o m e  
s t rong ly  d a m p e d  owing  to the wave l eng th  sp read  of  
abou t  A A / h  --- 1% a n d  one  can  c o m p a r e  wi th  Ra a n d  
Rp direct ly .  The  e x p e r i m e n t a l  full  w id ths  at h a l f  
m a x i m u m  for  the case  v = - w  is 0.0081 s o f  arc a n d  
for  v = w it is 0.0057 s o f  arc, wh ich  has  to be com- 
pa red  to the  ca lcu la t ed  values  o f  0.0079 a n d  0.0060 s 
o f  arc, respect ively .  

This  work  has  been  s u p p o r t e d  by  F o n d s  zur  F r r -  
de rung  der  W i s s e n s c h a f t l i c h e n  F o r s c h u n g  (projec t  
4230). 

'•.• 2.2 

i i.8 

1.4 

~ ~  /3 = 13 ° 

_ O08!s_ec arc 

-8 -4 o 4 8 - ~  ~ t ( * )  

l l l l l 
- 0008 - 0004 0 0004 0008 -~- 6 (sec arc) 

(b) 

/3 =220 
| 

.~ 2.2 
E 0.0057 sec arc 

i i [ i 

- 8  - 4  0 4 8 E ~ t ( * )  
I t I I t I 

-0015 -001 -0005 0 0005 001 0015~61sec arc) 
(c) 

Fig. 4. (a) Sketch of the experimental set-up and characteristic 
results for the cases (b) v = - w  and (c) v = w measured with 
different aluminum wedges. 
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